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In order to reduce the buffer space around objects in a computational space, application of cylindrical or spherical perfectly
matched layer (PML) can be very effective. Despite their wide-spread application in the finite-different time-domain (FDTD) method,
we could not find any paper discussing this issue in the context of the finite-element time-domain (FETD) method. In this paper, we
develop and implement uniaxial PML (UPML) for both mixed and vector wave equation (VWE) FETD formulations. In contrast to
the convolutional-based formulations of the VWE FETD, we adopt the Möbius transformation technique, which is simpler in form
and easier-to-implement.

Index Terms—Anisotropic media, finite-element time-domain (FETD), perfectly matched layer (PML).

I. INTRODUCTION

PERFECTLY matched layer (PML) has been known as a
very effective approach in truncating the computational

domain in differential-based numerical techniques. It has been
widely analyzed in the context of the finite-difference time-
domain (FDTD) method in the electromagnetics community;
however, it has witnessed less attention in finite element
formulations. The proposed formulations for the finite-element
time-domain (FETD) have usually considered the Cartesian
formulation [1], [2] and we are not aware of any paper
on either cylindrical or spherical PML in FETD. The only
exception is [3], in which a 2-D conformal PML formulation
based on the mixed E − B FETD is implemented using the
auxiliary differential equation (ADE) approach.

In this paper, we report the development and implementation
of the UPML for both mixed and VWE FETD methods
using the Möbius transformation technique [4], [5]. It allows
efficient and straightforward discretization of the PML metrics.
Furthermore, unconditional stability (US) of the VWE FETD
formulation is also proven to be preserved in dispersive media
when the Möbius transformation is adopted [5]. The validity
of the porposed formulation is verified through a simple 2-
D example in which the absolute relative error is better than
0.0032.

II. FORMULATION

A. PML Metrics

Consider cylindrical or spherical coordinate system with
(u1, u2, u3) coordinates. The PML diagonal tensor in either
case can be defined as
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in which γu1 , γu2 , γu3 are PML metrics along each coordinate
in a general form of γuk

(ω) = α(uk) + β(uk)/jω [6]. The
permittivity and permeability of the PML can be defined as

ε = εbΛ and µ = µbΛ, in which εb and µb represent back-
ground material properties 1. We discretize them in time using
the Möbius transformation technique that simply involves the
following substitution,
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which yields a rational function along each direction, k, in the
z-domain, as

εk(z) =
c0k

+ c1k
z−1 + · · ·+ c(pk)k

z−pk

1 + d1k
z−1 + · · ·+ d(pk)k

z−pk
(3)

µ−1
k (z) =

q0k
+ q1k

z−1 + · · ·+ q(pk)k
z−pk

1 + r1k
z−1 + · · ·+ r(pk)k

z−pk
(4)

Throughout the paper, we need to implement terms like
y(t) = εk(t)∗x(t) in which ∗ represents temporal convolution.
Applying the z-transformation yields ỹ = εk(z)x̃. In order
to implement it efficiently, we need to define the following
auxiliary variables

Wn
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(5)
by which the value of y at t = n∆t can be obtained as

yn = c0k
xn +Wn−1

1,k (6)

B. FETD Formulations
In this section, we briefly explain the first FETD formulation

to be employed in this paper. The other formulation will be
discussed in the long version of the paper.

Consider the VWE spatially discretized using the vector
basis functions, Ni, in the PML region as

µ−1
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∗ [Su1

]{e}+ µ−1
u2
∗ [Su2

]{e}
+ µ−1

u3
∗ [Su3

]{e}+ εu1
∗ [Mu1
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∗ [Mu3
]{ë} = 0 (7)

1In order to avoid complexity of notation, we assume diagonal tensor for
background material as well.
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Fig. 1. A pictorial view of the problem.

where double dot indicates second temporal derivative. We
assume constant material properties inside each element in
the derivation of (7). Since basis functions are usually rep-
resented in Cartesian coordinates, one needs to map either
basis functions to the desired coordinates or the PML tensor
Λ to the Cartesian coordinates. Since implementation of each
off-diagonal entry requires a system of ordinary differential
equations (ODEs) to be solved, we follow the former approach
in this paper. The latter one destroys diagonality of the PML
tensor and, therefore, produces computational overhead. In this
case, mass and stiffness matrices can be obtained as

Mi,j
k =

∫
Ω

(Ni · ûk) (ûk ·Nj)dV (8)

Si,jk =

∫
Ω
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where ûk represents the unit vector along coordinate k. These
integrals are evaluated using numerical quadrature. Having
substituted convolution terms in (7) with those similar to (6)
and discretized it in time using the Newmark-β method with
β = 1/4, yields{
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where
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and whereW and G are auxiliary variables for permittivity and
permeability of the UPML, respectively. All auxiliary variables
can be updated in a similar manner to (5).

III. NUMERICAL RESULT

In this section, we provide a simple 2-D numerical example
to validate the proposed formulation. Fig. 1 shows the problem
consisting of two concentric circles with radii of 15 cm and
30 cm between which is filled by PML material. A magnetic
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Fig. 2. Recorded magnetic field intensity during 900 time steps at the center
of the problem.

dipole with the Blackman-Harris pulse shape is placed at the
center of the circles and the magnetic field intensity, Hz , is
recorded at the same point. The problem is solved twice: with
PML and without PML (as the reference). The simulation
continued for 900 time steps by which time reflected waves are
not sensed (see Fig. 2). The relative error is less than 0.0032.

IV. CONCLUSION

By using the Möbius transformation technique and a
memory-efficient algorithm, we have proposed, developed and
implemented the UMPL for both cylindrical and spherical
coordinates in the FETD. Both mixed and VWE formulations
of the FETD have been considered. The proposed Spherical
and Cylindrical PMLs can reduce the buffer space in problems
with those symmetries without increase in the computation of
the PML update equations.

Full details, additional formulations, and more practical 3-D
numerical results will be presented at the conference and in
the long version of the paper.
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